Infografika o nevarnostih elektromagnetnih sevanjih


železo (6 od skupno 1350 raziskav)
"Histological and immunohistochemical examinations between the experimental and control groups showed that exposure to 2.45 GHz EMR for 2 h per day does not interfere with the development of teeth and surrounding tissues. However, there were alterations in the elemental composition of the teeth, especially affecting such oxidative stress-related elements as copper, zinc, and iron, suggesting that short-term exposure to Wi-Fi-induced EMR may cause an imbalance in the oxidative stress condition in the teeth of growing rats."
"In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats."
Effects of static magnetic fields at the cellular level
Miyakoshi J, Prog Biophys Mol Biol, februar 2005
"This method has been used to confirm that a static magnetic field alone has no such effect. However, the frequency of micronucleus formation increases significantly when certain treatments (e.g., X-irradiation) are given prior to exposure to a 10 T static magnetic field. It has also been reported that treatment with trace amounts of ferrous ions in the cell culture medium and exposure to a static magnetic field increases DNA damage, which is detected using the comet assay. In addition, many studies have found a strong magnetic field that can induce orientation phenomena in cell culture."
Magnetic-field-induced DNA strand breaks in brain cells of the rat
Lai H, Singh NP, Environ Health Perspect, maj 2004
"Treatment with the iron chelator deferiprone also blocked the effects of magnetic fields on brain cell DNA, suggesting the involvement of iron. Acute magnetic field exposure increased apoptosis and necrosis of brain cells in the rat. We hypothesize that exposure to a 60-Hz magnetic field initiates an iron-mediated process (e.g., the Fenton reaction) that increases free radical formation in brain cells, leading to DNA strand breaks and cell death. This hypothesis could have an important implication for the possible health effects associated with exposure to extremely low-frequency magnetic fields in the public and occupational environments."
"The model may therefore be extended to explain results obtained in studies of epileptic patients which show effects on the central nervous system from low frequency square wave and D.C. magnetic fields. In addition, the model also may provide a plausible mechanism linking exposure to magnetic fields from discontinuous transmission cellular telephones and disruption of normal cellular processes in the human brain."
Magnetite biomineralization in the human brain
Kirschvink JL et al, Proc Natl Acad Sci U S A, avgust 1992
"These magnetic and high-resolution transmission electron microscopy measurements imply the presence of a minimum of 5 million single-domain crystals per gram for most tissues in the brain and greater than 100 million crystals per gram for pia and dura. Magnetic property data indicate the crystals are in clumps of between 50 and 100 particles. Biogenic magnetite in the human brain may account for high-field saturation effects observed in the T1 and T2 values of magnetic resonance imaging and, perhaps, for a variety of biological effects of low-frequency magnetic fields."

Podprite naš projekt

Projekt Ni nam vseeno je naše darilo vam. Ustvarjamo ga s srcem, v želji, da najdete koristne informacije, ki bi vam lahko pomagale, da (p)ostanete zdravi. Vsak doniran znesek bo porabljen za dober namen.
Vsa vsebina na spletni strani (razen slik) je pod licenco Creative Commons (CC BY 4.0). Prosto kopirajte, prilagajajte in razširjajte naprej.